Shop Scheduling

Applications

- Model Factory-like Settings
- Also models packet routing
- ...

Basic Model: Multiple machines. A jobs consist of operations, each operations has a

- processing time p_{ij}
- Machine on which to run M_{ij}

Shop Scheduling

Applications

- Model Factory-like Settings
- Also models packet routing
- ...

Basic Model: Multiple machines. A jobs consist of operations, each operations has a

• processing time p_{ij}

• Machine on which to run M_{ij}

All appearents of a john Ø

Packet Ratin in Internet Cal. NJ routers = machines jeb = Communication = seguence jeb = reis-email, of macher zoomcall)

FLOW Shop In-th) stenci

Variants of Shop Scheduling

Basic Types

- Job shop. Each job consist of operations in a linear order
- Flow shop. Job shop, but the linear order is the same for each job. (assembly line)
- Open shop. Each job consists of unordered operations.

job is not a

Other Constraints

- time between operations
 - minimum time (e.g. cooling)
 - maximum time (e.g. hot potato)
- setup at machines (e.g. paint color)
- limited storage between machines

1 Major

ras. \mathbb{N}

idea of c

lhr lmin After the lmin ICCT ICAP 58 Icar NULOS finished Cals poc. meln 61 slow done fle raka Jass crive at M, whill

SPT(I)- LPT(II)

good to put tolly society put tolly

Example

- $\begin{array}{c|cccc} j & p_{1j} & p_{2j} \\ \hline \mathbf{,1} & \mathbf{3} & \mathbf{6} \end{array}$
- 2 10 1
- 3 3 2
- $2 \quad 4$ · 4 ຸ 5 8 8

Algorithm:

- Partition into two sets:
 - ${
 m Set \ I \ has} \ \ p_{1j} \leq p_{2j} \ \ (1,4,5)$
 - $\text{Set II has } p_{1j} > p_{2j} \ \ (2,3)$
- Run Set I in SPT order by p_{1j}
- Run Set II in LPT order by p_{2j}

For this problem: 4,1,5,3,2

Can use interchange arguments to show that this is optimal

- Set I before Set II
- Set I in SPT order

More general flow shop

- 3 machines. There is an optimal permutations schedule.
- 4 machines. Optimal schedule may not be a permutation schedule.

TREMUTON Schedules \sum 1210 M = 10H ACL n! 2101 ~ 106 $\left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \right) \\ g \end{array}\right)$ $M = 1 M^{16}$

Decision variables: $x_{jk} = 1$ if job j is k th in sequence

Extra Variables:

- I_{ik} : idle time on machine *i* between jobs in positions *k* and k+1.
- W_{ik} : waiting time of job in position k between machines i and i+1.

Ideas

- Makespan is sum of
 - Processing time of first job on all machines
 - processing time of all jobs on machine m
 - Idle time on machine m
- Matching constraints to ensure that each job is in one position and each position has one job
 - Relationship between idle time and waiting time constraints.
 - Way to map variables so you can talk about k th job to run, rather than job indexed by j.

$$P_{q(3)} = x_{13} p_{q_1} + x_{23} p_{q_2} + x_{33} p_{q_3} + x_{13} p_{q_4} + x_{53} p_{q_5}$$

$$P_{10''_1} + h_{t_1} + h_{t_2} + h_{t_3} p_{q_5} + h_{t_3} p_{q_5} + h_{t_3} p_{q_5} + h_{t_5} p_{q_5} + h_{t_5}$$

Matching Constraints

٠

$$\sum_{j=1}^{n} x_{jk} = 1 \quad k = 1 \dots n \qquad \begin{array}{c} \text{Cach particles} \\ \text{Solution} \\ \text{Solution} \\ \text{Solution} \\ \text{Cach particles} \\ \text{Solution} \\ \text{Solution}$$

Constraints relating idle and waiting time $I_{ik} + p_{i(k+1)} + W_{i,k+1} = W_{ik} + p_i$

$$I_{ik} + p_{i(k+1)} + W_{i,k+1} = W_{ik} + p_{i+1(k)} + I_{i+1,k} \quad \forall k, i$$

$$W_{i1} = 0 \forall i, \quad I_{1k} = 0 \forall k$$

Other Facts

- $F3||C_{\text{max}}$ is NP-complete.
- $F3|\mathbf{perm}|C_{\max}$ is NP-complete.
- Easy case: all operations are the same size. Then flowshop with many objectives is easy.

Example

	J_1	J_2	J_3	J_4	J_5
M_1	5	5	3	6	3
M_2	4	4	2	4	4
M_3	4	4	3	4	1
$ \begin{array}{c} M_1 \\ M_2 \\ M_3 \\ M_4 \end{array} $	3	6	3	2	5

Example:Compute Slopes

	J_1	J_2	J_3	J_4	J_5	
M_1	5	5	3	6	3	
M_2	4	4	2	4	4	
M_3	4	4	3	4	1	
$ \begin{array}{c} M_1 \\ M_2 \\ M_3 \\ M_4 \end{array} $	3	6	3	2	5	
				-12	3	