Shop Scheduling

Applications

- Model Factory-like Settings
- Also models packet routing
- ...

Basic Model: Multiple machines. A jobs consist of operations, each operations has a

- processing time $p_{i j}$
- Machine on which to run $M_{i j}$

Shop Scheduling

Applications

- Model Factory-like Settings
- Also models packet routing
- ...

Basic Model: Multiple machines. A jobs consist of operations, each operations has a

- processing time $p_{i j}$
- Machine on which to run $M_{i j}$

0

जtcrmatar and

Packet Ration in Internet

Flow Ship

Variants of Shop Scheduling

Basic Types

- Job shop. Each job consist of operations in a linear order
- Flow shop. Job shop, but the linear order is the same for each job. (assembly line)
- Open shop. Each job consists of unordered operations.

slow dore the rok a will jess carve at M_{1}

SPT(I)- LPT(II)

Example

j	$p_{1 j}$	$p_{2 j}$
$\mathbf{1}$	3	6
2	10	1
3	3	2
4	2	4
, 5	8	8

Algorithm:

- Partition into two sets:
- Set I has $p_{1 j} \leq p_{2 j}(\mathbf{1}, \mathbf{4}, \mathbf{5})$
- Set II has $p_{1 j}>p_{2 j}(2,3)$

- Run Set I in SPT order by $p_{1 j}$
- Run Set II in LPT order by $p_{2 j}$

For this problem: $4,1,5,3,2$
Can use interchange arguments to show that this is optimal

- Set I before Set II
- Set I in SPT order
- Set II in LPT order.ipaovin tie tor

More general flow shop

- 3 machines. There is an optimal permutations schedule.
- 4 machines. Optimal schedule may not be a permutation schedule.

$n=10$ $m=10$

Ideas

- Makespan is sum of
- Processing time of first job on all machines
- processing time of all jobs on machine m
- Idle time on machine m
- Matching constraints to ensure that each job is in one position and each position has one job
- Relationship between idle time and waiting time constraints.
- Way to map variables so you can talk about k th job to run, rather than job indexed by j.

$$
\begin{aligned}
& \begin{array}{l}
\quad P_{q(3)}=x_{13} P_{91}+x_{23} P_{92}+x_{33} P_{93}+x_{43} P_{94}+x_{53} P_{95} \\
\text { pror_tire } \\
\text { of grids } \\
\text { toronon } \\
=P
\end{array} \\
& M_{9} \\
& \text { MIP } \sim n^{2} \times \text { vas's } \\
& \text { Objective } \\
& \begin{array}{r}
\text { th ob to run och } \\
p_{i(k)}=\sum_{j=1}^{n} x_{j k} p_{i j}
\end{array} \\
& \text { jobl machen } \\
& \begin{array}{l}
\text { mecherm } \\
\text { Idletien }
\end{array}
\end{aligned}
$$

Matching Constraints

$$
\begin{array}{cc}
\sum_{j=1}^{n} x_{j k}=1 \quad k=1 \ldots n & \begin{array}{c}
\text { each pasiti hes } \\
\text { qjob }
\end{array} \\
\begin{array}{c}
\sum_{k=1}^{n} x_{j k}=1 \quad j=1 \ldots n \\
\text { eachjobhas } \\
\text { epostion }
\end{array}
\end{array}
$$

Constraints relating idle and waiting time

$$
\begin{gathered}
I_{i k}+p_{i(k+1)}+W_{i, k+1}=W_{i k}+p_{i+1(k)}+I_{i+1, k} \quad \forall k, i \\
W_{i 1}=0 \forall i, \quad I_{1 k}=0 \forall k
\end{gathered}
$$

Other Facts

- $F 3 \| C_{\max }$ is NP-complete.
- $F 3 \mid$ perm $\mid C_{\text {max }}$ is NP-complete.
- Easy case: all operations are the same size. Then flowshop with many objectives is easy.
 $x=J, \quad(2,6)+$ slope $0=J_{2}(4,2)$-slope

Motivation: Think about SPT(I)-LPT(II).

- Early jobs should be small on M_{1} and large on M_{2}.
- Late jobs should be large on M_{1} and small on M_{2}.
- Generalize to "slope". Larger stope should go earlier.
- Slope $A_{j}=-\sum_{i=1}^{m}(m-(2 i-1)) p_{i j}$

Example

	J_{1}	J_{2}	J_{3}	J_{4}	J_{5}
M_{1}	$\mathbf{5}$	$\mathbf{5}$	$\mathbf{3}$	$\mathbf{6}$	$\mathbf{3}$
M_{2}	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{4}$
M_{3}	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{1}$
M_{4}	$\mathbf{3}$	$\mathbf{6}$	$\mathbf{3}$	$\mathbf{2}$	5

slue of or,

$$
(-3-1+1+3) \cdot(5
$$

no
$M_{1} M_{2} M_{3} M_{4}$
slope

Example

	J_{1}	J_{2}	J_{3}	J_{4}	J_{5}
M_{1}	$\mathbf{5}$	$\mathbf{5}$	$\mathbf{3}$	$\mathbf{6}$	$\mathbf{3}$
M_{2}	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{4}$
M_{3}	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{1}$
M_{4}	$\mathbf{3}$	$\mathbf{6}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{5}$

Example:Compute Slopes

	J_{1}	J_{2}	J_{3}	J_{4}	J_{5}
M_{1}	5	5	3	6	3
M_{2}	4	4	2	4	4
M_{3}	4	4	3	4	1
M_{4}	3	6	3	2	5
A_{j}	-6	3	1	-12	3

